

ADITYA ENGINEERING COLLEGE An Autonomous Institution

Approved by AICTE • Permanently Affiliated to JNTUK • Accredited by NAAC with 'A' Grade Recognised by UGC under sections 2(f) and 12(B) of UGC Act, 1956 Aditya Nagar, ADB Road, Surampalem - 533437, Near Kakinada, E.G.Dt., Ph:99498 76662

M.Tech: Power Electronics and Drives

Program Educational Objectives (PEOs):

Graduates of the Program will

PEO1	Provide the students with a solid foundation in mathematics, science and engineering to solve Power electronics and Drives problems and also to pursue research in the appropriate technological context.
PEO2	Prepare the students with strong scientific and engineering temperament to work individually as well as in teams to comprehend, analyze, design and create acceptable solutions for the real life problems.
PEO3	Inculcate a sense of ethics, professionalism, multidisciplinary approach, entrepreneurial thinking and effective communication skills in the postgraduates.
PEO4	Provide an academic ambience that allows to improve the hard and soft skills and to grow the habit of self learning so as to engage in lifelong learning for a successful professional carrier.

Program Outcomes (POs):

After successful completion of the program, the graduates will be able to

	Scholarship of Knowledge: Acquire in-depth knowledge of specific discipline
PO 1	or professional area, including wider and global perspective, with an ability to
101	discriminate, evaluate, analyse and synthesise existing and new knowledge, and
	integration of the same for enhancement of knowledge.
	Critical Thinking: Analyse complex engineering problems critically, apply
DO 4	independent judgement for synthesising information to make intellectual and/or
PO 2	creative advances for conducting research in a wider theoretical, practical and
	policy context
	Problem Solving: Think laterally and originally, conceptualise and solve
	engineering problems, evaluate a wide range of potential solutions for those
PO 3	problems and arrive at feasible, optimal solutions after considering public health
	and safety, cultural, societal and environmental factors in the core areas of
	expertise.
	Research Skill: Extract information pertinent to unfamiliar problems through
	literature survey and experiments, apply appropriate research methodologies,
DO 4	techniques and tools, design, conduct experiments, analyze and interpret data,
PO 4	demonstrate higher order skill and view things in a broader perspective,
	contribute individually/in group(s) to the development of scientific/technological
	knowledge in one or more domains of engineering.

	Usage of modern tools: Create, select, learn and apply appropriate techniques,
PO 5	resources, and modern engineering and IT tools, including Prediction and
103	modelling, to complex engineering activities with an Understanding of the
	limitations.
	Collaborative and Multi disciplinary work: Possess knowledge and
	understanding of group dynamics, recognise opportunities and contribute
PO 6	positively to collaborative-multidisciplinary scientific research, demonstrate a
100	capacity for self-management and teamwork, decision-making based on open-
	mindedness, objectivity and rational analysis in order to achieve common goals
	and further the learning of themselves as well as others.
	Project Management and Finance: Demonstrate knowledge and understanding
	of engineering and management principles and apply the same to one's own
PO 7	work, as a member and leader in a team, manage projects efficiently in
	respective disciplines and multidisciplinary environments after considerisation of
	economical and financial factors.
	Communication : Communicate with the engineering community, and with
	society at large, regarding complex engineering activities confidently and
PO 8	effectively, such as, being able to comprehend and write effective reports and
	design documentation by adhering to appropriate standards, make effective
	presentations, and give and receive clear instructions.
	Life-long Learning: Recognize the need for, and have the preparation and
PO 9	ability to engage in life-long learning independently, with a high level of
	enthusiasm and commitment to improve knowledge and competence
	continuously.
	Ethical Practices and Social Responsibility: Acquire professional and
	intellectual integrity, professional code of conduct, ethics of research and
PO 10	scholarship, consideration of the impact of research out comes on professional
	practices and an understanding of responsibility to contribute to the community
	for sustainable development of society.
	Independent and Reflective Learning: Observe and examine critically the
PO 11	outcomes of one's actions and make corrective measures subsequently, and learn
	from mistakes without depending on external feedback.

Program Specific Outcomes (PSOs):

After successful completion of the program, the graduates will be able to

	PSO 1	Apply power electronic concepts and practices into power electronics and drives for the betterment of industry as well as society.
•	PSO 2	Explore and analyze complex engineering problems in power electronics and electrical drives industries.
	PSO 3	Apply project management techniques to electrical and electronics systems.